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Abstract— Connected automated vehicles have shown great
potential to improve the efficiency of transportation systems
in terms of passenger comfort, fuel economy, stability of
driving behavior and mitigation of traffic congestions. Yet, to
deploy these vehicles and leverage their benefits, the underlying
algorithms must ensure their safe operation. In this paper, we
address the safety of connected cruise control strategies for
longitudinal car following using control barrier function (CBF)
theory. In particular, we consider various safety measures such
as minimum distance, time headway and time to conflict, and
provide a formal analysis of these measures through the lens of
CBFs. Additionally, motivated by how stability charts facilitate
stable controller design, we derive safety charts for existing
connected cruise controllers to identify safe choices of controller
parameters. Finally, we combine the analysis of safety measures
and the corresponding stability charts to synthesize safety-
critical connected cruise controllers using CBFs. We verify our
theoretical results by numerical simulations.

I. INTRODUCTION

Vehicle automation holds the promise of improving the
efficiency of traffic systems, with great prospective benefits
in safety, passenger comfort, fuel economy, mitigation of
traffic congestions and reduction of travel times. The success
of automated vehicles (AVs), however, is conditioned on
designing efficient longitudinal and lateral controllers. There-
fore, strategies like adaptive cruise control (ACC) have been
studied extensively with great success. The performance of
AVs is further improved by providing additional information
about the surrounding traffic via vehicle-to-everything (V2X)
connectivity—this leads to connected automated vehicles
(CAVs) with better ability to respond to other road par-
ticipants. For example, cooperative adaptive cruise control
(CACC) [1] allows platoons of CAVs to share information,
cooperate, and improve their driving behavior. Connected
cruise control (CCC) [2], on the other hand, regulates the
motion of a single CAV while leveraging information shared
by other connected (but not necessarily automated) vehicles.
With well-designed ACC, CACC or CCC systems, CAVs
have shown significant benefits in energy saving [3] and
in mitigating traffic congestions [4], [5]. Remarkably, these
benefits have also been showcased by experiments [6], [7].

To deploy CAVs and thereby enjoy their benefits, safe and
collision-free behavior is of primary concern. Recently, the
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Fig. 1. Connected cruise control (CCC) setup: a connected automated ve-
hicle (CAV) is controlled to safely follow a connected human-driven vehicle
(CHV) by using information from vehicle-to-vehicle (V2V) communication.

literature has put emphasis on safety-critical control designs
for CAVs. These include safe ACC systems established
using reachability analysis [8], formal methods [9] and
control barrier functions (CBFs) [10], [11], and safe CACC
with model predictive control [12], just to mention a few
examples. Now, we focus on CBF-based approaches, due
to their success in a variety of application areas, including
AV experiments in traffic [13], AVs executing obstacle
avoidance [14], multi-agent systems capturing AVs [15],
traffic merging [16], roundabout crossing [17], and safe
traffic control by CAVs [18]. Safe CCC with CBFs has also
appeared recently [19], and it has been implemented on a
full-size truck and successfully tested in experiments [20].

In this paper, we establish safe CCC designs that al-
low CAVs to follow other vehicles with guaranteed safety
w.r.t. various metrics like minimum distance, time headway
or time to conflict. We make two contributions through the
application of CBF theory. First, we analyze the safety of an
existing CCC strategy, and determine provably safe choices
of controller parameters. These results are summarized as
safety charts—a concept adopted from [19]. Second, we
synthesize safety-critical controllers by minimally modify-
ing existing, potentially unsafe designs. We use numerical
simulations to verify the theoretical analysis. Throughout
the paper we highlight the benefits of connectivity in order
to maintain safety in mixed traffic scenarios. The results
presented are also extendable to other mobile agent systems
where spatiotemporal separation between the agents is re-
quired, e.g., legged robots, airborne agents and sea vessels.

II. CONNECTED CRUISE CONTROL

Consider the scenario in Fig. 1, where a connected auto-
mated vehicle (CAV) is controlled longitudinally to follow
a connected human-driven vehicle (CHV) on a single lane
straight road while maintaining a safe distance. We assume
that the CAV has access to measurements of its own speed
v and acceleration a, the leading CHV’s speed vL and
acceleration aL, and the distance D, by the help of on-board
range sensors and vehicle-to-vehicle (V2V) connectivity.
Note that aL is typically difficult to obtain by range sensors,
while V2V communication can help provide it.



TABLE I
PARAMETER VALUES USED FOR THE NUMERICAL EXAMPLES

Parameter Symbol Value Unit
resistance terms p(v) 0 m/s2

standstill distance Dst 5 m
range policy gradient κ 0.6 1/s

speed limit vmax 15 m/s
safe control gains (point P) (A,B,C) (0.4,0.6,0) (1/s,1/s,1)

unsafe control gains (point Q) (A,B,C) (0.4,0.3,0) (1/s,1/s,1)
safe distance Dsf 1 m

safe time headway Th 1.67 s
safe time to conflict Tc 1.67 s

maximum speed vmax = v̄ 15 m/s

We describe car following by the state x =
[
D v vL

]⊤
and the model:

Ḋ = vL − v,

v̇ = u− p(v),

v̇L = aL,

(1)

where the CAV executes the acceleration command u subject
to rolling and air resistance captured by p(v) ≥ 0.

The car-following task can be accomplished by the fol-
lowing connected cruise control (CCC) strategy, u = kd(x),
that was proposed in [2] and experimentally tested in [6]:

kd(x) = A
(
V (D)− v

)
+B

(
W (vL)− v

)
+ CaL. (2)

The CAV responds to the distance, speed difference and
CHV’s acceleration with gains A,B,C≥0, respectively, and:

V (D) = min{κ(D −Dst), vmax},
W (vL) = min{vL, vmax}.

(3)

Here the speed policy W prevents the CAV from following
a CHV that exceeds the speed limit vmax, while the range
policy V prescribes a desired speed as a function of the
distance D, that is zero at the standstill distance Dst and
increases linearly with gradient κ > 0 up to the speed limit.

Fig. 2 shows the performance of CCC by numerical
simulations of (1)-(2) for two different sets of control gains
(solid lines and dash-dot lines). Unless stated otherwise, the
parameters of each numerical result in this paper are those
listed in Table I. The simulations1 capture an emergency
braking where the CHV comes to a stop. Using CCC, the
CAV responds to this event and decelerates; see panels (b)
and (d). Notice in panel (a) that the distance between the
vehicles greatly depends on the choice of control gains. The
selection of controller parameters has significant impact on
safety, that is highlighted in panel (c) and is discussed below.

To characterize the safety of longitudinal control, we rely
on various safety measures that require different kinds of
spatiotemporal separations between the vehicles. We list
three possible safety criteria below, in the form h(x) ≥ 0,
associated with a safety measure h and a safe set S of states.

(i) Distance must be kept above a safe value Dsf :

SD = {x ∈ R3 : D ≥ Dsf},
hD(x) = D −Dsf .

(4)

1Matlab codes for each example are available at: https://github.
com/molnartamasg/safe-connected-cruise-control.
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Fig. 2. Simulations of model (1) with CCC (2), using a provably safe
choice of controller parameters (solid lines) and an unsafe choice (dash-dot
lines). These sets of parameters correspond to points P and Q in Fig. 5(a),
respectively. For the unsafe CCC setup, formal safety guarantees can be
recovered by utilizing the safety filter (28)-(30) (dashed lines).
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Fig. 3. Safe sets of longitudinal car-following, considering safety with
respect to distance (D), time headway (TH) and time to conflict (TTC).
Arrows indicate the safe side of the set boundaries.

(ii) Time headway must be kept above a safe value Th:

STH = {x ∈ R3 : D ≥ Dsf + Thv},
hTH(x) = (D −Dsf)/Th − v.

(5)

(iii) Time to conflict must be kept above a safe value Tc:

STTC = {x ∈ R3 : D ≥ Dsf + Tc(v − vL)},
hTTC(x) = (D −Dsf)/Tc + vL − v.

(6)

The time to conflict is often referred to as time to collision
if Dsf = 0. For further choices of safety indicators, please
see [18], [19] and the references therein.

The safe sets in (4)-(6) are depicted in Fig. 3, where their
boundaries are shown by thick lines in panel (a) and as
planes in panel (b). The system is safe w.r.t. the given safety
measure if it evolves in the half space indicated by arrows.
Note that the time headway is the strictest of the three safety
indicators: it requires the largest distance at a given speed to
be safe. The safety of the previous simulation results w.r.t. the
time headway is evaluated in Fig. 2(c). While CCC (2) keeps
system (1) safe with one choice of CCC parameters (solid
lines), it fails to do so with another (dash-dot lines). As such,
choosing the parameters of the CAV’s controller has crucial
impact on safety and safe parameters must be identified.

The problem of choosing controller parameters has been
well-studied for CCC from stability perspective. Specifi-
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Fig. 4. Stability chart [2] of CCC (1)-(2) with (a) C = 0, (b) various
C > 0 values.

cally, [2] has derived stability charts for (1)-(2) that identify
controller parameters associated with stable driving. These
charts distinguish the plant stable domain, where the CAV
is able to approach a constant speed in a stable way, and
the string stable region, where the CAV has smaller speed
fluctuations than the CHV, thereby smoothing the traffic flow.
Examples of these stability charts from [2] are plotted in
Fig. 4, where the plant stable domain, given by A ≥ 0 and
A ≥ −B, is red, and the string stable region, given by A ≥ 0,
A ≥ 2

(
(1− C)κ−B

)
and C ≤ 1, is blue. The charts are

shown for C = 0 in panel (a), and C = 0, 0.25, 0.75 (thin
lines), C = 0.5 (thick line and shading) and C → 1 (dashed
line) in panel (b). In what follows, we establish safety
charts—whose concept first appeared in [19]—in a similar
way to identify safe controller parameters. As preliminary,
we revisit the theory of control barrier functions.

III. CONTROL BARRIER FUNCTIONS
Consider a control system with state x ∈ Rn, input

u ∈ Rm and dynamics given by locally Lipschitz continuous
functions f : Rn → Rn and g : Rn → Rn×m:

ẋ = f(x) + g(x)u; (7)

cf. (1) with f(x) =
[
vL−v −p(v) aL

]⊤
, g(x) =

[
0 1 0

]⊤
.

With a locally Lipschitz continuous controller k : Rn → Rm,
u = k(x), such as (2), the corresponding closed loop system:

ẋ = f(x) + g(x)k(x), (8)

with the initial condition x(0) = x0 ∈ Rn, has a unique
solution x(t), which we assume to exist for all t ≥ 0.

We call (8) as safe if its solution x(t) evolves within a safe
set S for all time. We consider S, and its boundary ∂S, to be
given by a continuously differentiable function h : Rn → R:

S = {x ∈ Rn : h(x) ≥ 0},
∂S = {x ∈ Rn : h(x) = 0}.

(9)

That is, h(x(t)) ≥ 0 for all t ≥ 0 indicates safety while
h(x(t)) < 0 for any t ≥ 0 is unsafe, where h is selected
based on the application; cf. (4), (5) and (6). To maintain
h(x(t)) ≥ 0, we rely on the derivative of h along (7):

ḣ(x, u) = ∇h(x)f(x)︸ ︷︷ ︸
Lfh(x)

+∇h(x)g(x)︸ ︷︷ ︸
Lgh(x)

u. (10)

With this, Nagumo’s theorem [21] establishes safety for (8).

Theorem 1 ([21]). Let h satisfy ∇h(x) ̸= 0, ∀x ∈ ∂S.
System (8) is safe w.r.t. S if and only if:

ḣ
(
x, k(x)

)
≥ 0, ∀x ∈ ∂S. (11)

Condition (11) means that the controller does not allow
the system to leave the safe set S when it is at the boundary
∂S. To certify that (8) with a given controller k is safe, one
needs to verify that (11) holds. Yet, (11) does not provide
a constructive way to synthesize controllers for (7), since it
does not provide guidelines inside S (i.e., when h(x) > 0).

Control barrier functions (CBFs) [11] have been proposed
for the purpose of safety-critical controller synthesis.

Definition 1 ([11]). Function h is a control barrier function
for (7) on S if there exists α ∈ Ke

∞
2 such that for all x ∈ S:

sup
u∈Rm

ḣ(x, u) > −α
(
h(x)

)
. (12)

Note that the sup on left-hand side of (12) gives Lfh(x)
if Lgh(x) = 0 and ∞ otherwise, thus (12) is equivalent to:

Lfh(x) > −α
(
h(x)

)
, ∀x ∈ Rn s.t. Lgh(x) = 0. (13)

[11] established safety-critical control with CBFs as follows.

Theorem 2 ([11]). If h is a CBF for (7) on S, then any
locally Lipschitz continuous controller k that satisfies:

ḣ
(
x, k(x)

)
≥ −α

(
h(x)

)
(14)

for all x ∈ S renders (8) safe w.r.t. S.

Note that if (14) holds, then (11) also does. Furthermore,
condition (14) provides guidelines over the entire set S to
synthesize controllers. For example, CBFs are often used in
safety filters that modify a desired but not necessarily safe
controller kd : Rn → Rm to a safe controller subject to (14),
in the form of an optimization problem (quadratic program):

k(x) = argmin
u∈Rm

∥u− kd(x)∥2

s.t. ḣ(x, u) ≥ −α
(
h(x)

)
.

(15)

The solution of (15) can be given in closed form [20]:

k(x) =

{
kd(x) + max{0, η(x)} Lgh(x)

⊤

∥Lgh(x)∥2 , if Lgh(x) ̸= 0,

kd(x), if Lgh(x) = 0,

η(x) = −Lfh(x)− Lgh(x)kd(x)− α
(
h(x)

)
. (16)

For single input systems like (1), where u and Lgh(x)
are scalars, the safety conditions greatly simplify. If
Lgh(x) < 0, (14) is equivalent to:

k(x) ≤ ks(x), (17)

with:

ks(x) = −
Lfh(x) + α

(
h(x)

)
Lgh(x)

. (18)

If Lgh(x) > 0, (14) yields:

k(x) ≥ ks(x). (19)

2Function α : R → R is of extended class-K∞ (α ∈ Ke
∞) if it is

continuous, strictly increasing, α(0) = 0 and limr→±∞ α(r) = ±∞.



If Lgh(x) = 0, (13) guarantees that (14) holds for any k(x).
Thus, for scalar input u, the safety filter (16) becomes [20]:

k(x) =


min{kd(x), ks(x)}, if Lgh(x) < 0,

kd(x), if Lgh(x) = 0,

max{kd(x), ks(x)}, if Lgh(x) > 0.

(20)

Finally, it is important to distinguish the case Lgh(x) ≡ 0,
where the input u does not affect safety directly in (10) for
any x. Then, h is not a CBF and safety-critical controller
synthesis is not possible directly with h (unless (8) is safe for
any k(x)). Instead, one may construct an extended CBF [22],
[23], [24] with a continuously differentiable α ∈ Ke

∞:

he(x) = Lfh(x) + α
(
h(x)

)
, (21)

that is associated with the extended safe set:

Se = {x ∈ Rn : he(x) ≥ 0},
∂Se = {x ∈ Rn : he(x) = 0}.

(22)

If the system is kept inside Se, condition (14) holds, and the
system also evolves within S. Ultimately, safety w.r.t. the
intersection S ∩ Se of the two sets is guaranteed as follows.

Corollary 1 ([23]). If Lgh(x) ≡ 0 and he in (21) is a
CBF for (7) on Se with αe ∈ Ke

∞, then any locally Lipschitz
continuous controller k that satisfies:

ḣe

(
x, k(x)

)
≥ −αe

(
he(x)

)
(23)

for all x ∈ Se renders (8) safe w.r.t. S ∩ Se.

With this result, safety filters incorporating (23) can be
constructed analogously to (15)-(16), with he instead of h.

Accordingly, safety certification by Nagumo’s theorem—
the extension of Theorem 1 for Lgh(x) ≡ 0—is performed
on the boundary of S ∩ Se. This boundary is located at
∂Se ∩ S (where he(x) = 0 and h(x) ≥ 0) and at ∂S ∩ Se

(where h(x) = 0 and he(x) ≥ 0). Note that only the for-
mer case needs further analysis, since the latter case im-
plies he(x) = ḣ

(
x, k(x)

)
≥ 0, and the system cannot leave

S ∩ Se along this boundary per Theorem 1. Thus, safety
certification is summarized as follows.

Corollary 2. Let Lgh(x) ≡ 0 and he in (21) satisfy
∇he(x) ̸=0, ∀x ∈ ∂Se. System (8) is safe w.r.t. S∩Se if:

ḣe

(
x, k(x)

)
≥ 0, ∀x ∈ ∂Se ∩ S. (24)

Again, notice that (24) holds if (23) does. In the case of
a single input, (23) as well as the corresponding safety filter
can be expressed in simple form. Analogously to the non-
extended case, formulas (17), (19) and (20) can be used with:

ks(x) = −
Lfhe(x) + αe

(
he(x)

)
Lghe(x)

, (25)

cf. (18).

IV. SAFE CONNECTED CRUISE CONTROL

Now, we apply CBF theory to analyze the safety of
CCC (1)-(2), and to synthesize safety-critical CCC laws.
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Fig. 5. Safety charts of CCC (1)-(2) (a) w.r.t. the time headway criterion (5)
with C = 0 and various maximum speed v̄; (b) w.r.t. the distance and time
to conflict in (4) and (6), respectively, with various C.

A. Safe Time Headway

First, we characterize the safety of CCC w.r.t. the time
headway criterion in (5). For brevity, we introduce κ̄ = 1/Th.
The gradient and Lie derivatives of hTH in (10) read:

∇hTH(x) =
[
κ̄ −1 0

]
, LghTH(x) = −1,

LfhTH(x) = κ̄(vL − v) + p(v).
(26)

Note that both ∇hTH(x) ̸= 0, ∀x ∈ ∂STH and (13) hold,
hence Theorems 1 and 2 are applicable for certifying safety
and synthesizing safety-critical controllers, respectively.

We first use Theorem 1 to analyze the safety of the CCC
introduced in (2), i.e., u = k(x) = kd(x). Since the input is
scalar and LghTH(x) < 0, (11) is equivalent to:

ks(x)− kd(x) ≥ 0, ∀x ∈ Rn s.t. hTH(x) = 0, (27)

cf. (17), where the safe input defined in (18) is given by:

ks(x) = κ̄(vL − v) + p(v) + α
(
κ̄(D −Dsf)− v

)
. (28)

By analyzing under what conditions (27) holds, we arrive at
the following result. For the detailed analysis and the proof
of this result, please see the Appendix.

Theorem 3. System (1) with u=k(x)=kd(x) given by (2),
A,B≥0 and C = 0 is safe w.r.t. STH in (5) if:

• v ≥ 0, Dst ≥ Dsf and B = κ̄ ≥ κ; or
• v, vL ∈ [0, v̄] with some v̄ ≥ 0, Dst > Dsf , κ̄ ≥ κ and:

A ≥ |κ̄−B|v̄
κ(Dst −Dsf)

. (29)

Condition (29) can be visualized in the space (B,A)
of control gains, resulting in the safety chart in Fig. 5(a).
The safe domain—associated with a provably safe choice of
control gains—is shown for κ̄ = κ and the maximum speed
v̄ = 15m/s with thick green boundary and green shading, on
top of the stable domains (red and blue) that were plotted in
Fig. 4(a). Additional boundaries are shown for v̄ = 5, 10 and
20m/s (thin lines) and the limit v̄ → ∞ (dashed line). As the
maximum speed v̄ increases, the V-shaped safe region closes
to a single line given by the first bullet point in Theorem 3.
The safe and unsafe simulations in Fig. 2 correspond to
points P and Q, respectively, that indeed lie in the safe
and unsafe domains. Note that safety w.r.t. time headway
can be achieved even without acceleration feedback (C = 0),



while the response to acceleration (via CaL in (2)) will be
necessary for safety w.r.t. distance and time-to-collision.

The safety charts allow us to select the parameters of the
CCC (2) in a safe way. Alternatively, one can also synthesize
a safety-critical controller via Theorem 2, by viewing (2)
as desired input and using a CBF-based safety filter. Since
LghTH(x) < 0, the safety filter (20) simplifies to:

k(x) = min{kd(x), ks(x)}. (30)

The behavior of the safety filter in (28) and (30) is demon-
strated in Fig. 2 by dashed lines. The safety filter is applied
on the desired controller (2) with the unsafe gains corre-
sponding to the dash-dot lines (cf. point Q in Fig. 5(a)) and
α(r) = r. The end result is provably safe CCC.

In conclusion, safety can be guaranteed both by con-
troller tuning through safety charts and by applying safety
filters. Safety charts combined with stability charts (or other
analysis on performance) provide both safe and performant
controllers. However, if safe regions are too small, or do not
overlap with stable regions, one may design CCC based on
performance only (i.e., properties like string stability), and
apply safety filters. Safety filters ensure safety even when
safe parameters for nominal CCC laws are hard to realize.

B. Safe Distance and Time to Conflict

Next, we address safety w.r.t. distance, as in (4), for which:

∇hD(x) =
[
1 0 0

]
, LghD(x) ≡ 0,

LfhD(x) = vL − v.
(31)

Since LghD(x) ≡ 0, an extended CBF must be constructed
from hD via (21). We do this by the following observation.

Observation. For system (1), the time to conflict-based
safety measure hTTC in (6) can be expressed using the
distance-based safety indicator hD in (4) as:

hTTC(x) = LfhD(x) + hD(x)/Tc. (32)

That is, hTTC is an extension (21) of hD with α(r) = r/Tc.

Thus, hTTC is regarded as extended CBF he, yielding:

∇hTTC(x) =
[
κ̄ −1 1

]
, LghTTC(x) = −1,

LfhTTC(x) = κ̄(vL − v) + aL + p(v),
(33)

where κ̄ = 1/Tc. Observe that ∇hTTC(x) ̸= 0, ∀x ∈ ∂STTC

holds and hTTC is in fact a CBF. Thus, Corollaries 1 and 2
apply, and safety is established w.r.t. SD ∩ STTC as follows.

Proposition 1. System (1) is safe w.r.t. SD ∩ STTC given by
(4) and (6) if (24) holds (with he(x) = hTTC(x)) for a given
controller, u = k(x). Moreover, any controller, u = k(x),
that satisfies (23) renders (1) safe w.r.t. SD ∩ STTC.

Thus, safe distance is guaranteed by ensuring safe time to
conflict, and safety is ultimately achieved for SD ∩ STTC.
Moreover, note that if the vehicles do not move in reverse,
i.e., v, vL ≥ 0, and if Th = Tc, then hTH(x) ≥ 0 implies
hD(x) ≥ 0 and hTTC(x) ≥ 0; cf. (4)-(6). This means that
ensuring safety w.r.t. time headway yields safety w.r.t. time
to conflict and distance (provided that hTH(x0) ≥ 0 holds).

The safety of (1) w.r.t. distance and time to conflict with
the CCC law in (2) can be certified by (24) that reduces to:

ks(x)−kd(x)≥0, ∀x∈Rn s.t. hTTC(x)=0 and hD(x)≥0,
(34)

as LghTTC(x) < 0, cf. (17). Here ks is obtained from (25):

ks(x) = κ̄(vL−v)+p(v)+αe

(
κ̄(D−Dsf)+vL−v

)
+aL. (35)

After analyzing for which parameters (34) holds, we obtain
the following result (with proof in the Appendix).

Theorem 4. System (1) with u=k(x)=kd(x) given by (2)
and A,B,C ≥ 0 is safe w.r.t. SD ∩ STTC in (4) and (6)
if aL ≥ −γ(vL) with some γ ∈ K, v, vL ∈ [0, v̄] with some
v̄ ≥ 0, Dst > Dsf , κ̄ ≥ κ, C ≤ 1 and:

Aκ(Dst −Dsf) + min{0, B − κ̄}v̄

+ min
vL∈[0,v̄]

[
(κ̄−B +A)vL − (1− C)γ(vL)

]
≥ 0. (36)

Notice that the condition v̇L = aL ≥ −γ(vL) describes
the lead CHV’s motion and, according to CBF theory, it
guarantees vL(0) ≥ 0 =⇒ vL(t) ≥ 0, ∀t ≥ 0. That is, this
condition describes that the lead vehicle neither brakes too
hard nor drives in reverse. How “hard” it brakes is char-
acterized by the function γ. For example, for the constant-
jerk profile of the lead CHV in Fig. 2, it can be shown that
aL(t) ≥ −

√
20vL(t) for all time, i.e., γ(r) =

√
20r.

Similar to (29), condition (36) can be visualized in the
(B,A) space as safety chart; see Fig. 5(b) for γ(r) =

√
20r

and κ̄ = κ. The same parameters are used as in Fig. 4: C = 0
in panel (a), and C = 0, 0.25, 0.75 (thin lines), C = 0.5
(thick lines and shading) and C → 1 (dashed lines) in panel
(b). The safe region was found by brute-force evaluation
of (36) on a grid of vL, A and B (although expressing A
from (36) explicitly could be possible depending on the form
of γ). The safe region has V-shape, similar to Fig. 5(a), and
it moves towards smaller gain A as the acceleration gain
C is increased. This shows that acceleration aL feedback—
that is typically obtained by V2V connectivity—is helpful
in achieving safety w.r.t. distance and time to conflict, since
safety would otherwise require large gains and control inputs.

Moreover, apart from the safety charts, the safety filter (30)
provides an alternative way of safety-critical control regard-
less of the parameters of CCC (2). Choosing between safety
chart and safety filter is up to the user—the end result is
CCC with formal safety guarantees in both cases.

CONCLUSION
In this paper, we investigated the safety of connected au-

tomated vehicles (CAVs) executing connected cruise control
(CCC) by means of control barrier function (CBF) theory. We
established safety charts for existing CCC designs to identify
provably safe choices of controller parameters, analogously
to stability charts found in the literature. To recover formal
safety guarantees for unsafe parameter choices, we also
proposed CBF-based safety filters for controller synthesis. As
future research, we plan to investigate safe CCC in connected
vehicle networks where CAVs respond to multiple vehicles.



APPENDIX

Proof of Theorem 3. To prove safety, we apply Theorem 1
by showing that (27) holds. We express ks(x)− kd(x):

ks(x)− kd(x) = α(κ̄(D −Dsf)− v) + κ̄(vL − v) + p(v)

−A(V (D)− v)−B(W (vL)− v), (37)

and use V (D) ≤ κ(D −Dst), W (vL) ≤ vL, and p(v) ≥ 0:

ks(x)− kd(x) ≥ α(κ̄(D −Dsf)− v) + κ̄(vL − v)

−A
(
κ(D −Dst)− v

)
−B(vL − v). (38)

This means that providing safety without considering the
saturations at vmax in V , W and the resistance term p(v) im-
plies safety with those terms too. We substitute hTH(x) = 0
into (38), which makes the term of α zero; cf. (5). Then we
add AhTH(x) = 0 to both sides, and reorganize to:

ks(x)− kd(x) ≥ A(κ̄− κ)(D −Dsf) +Aκ(Dst −Dsf)

+ (κ̄−B)(vL − v). (39)

If v ≥ 0, then D≥Dsf when hTH(x) = 0. Thus, if Dst≥Dsf

and B = κ̄ ≥ κ also hold, (27) follows and safety is proven.
Furthermore, if v, vL ∈ [0, v̄], we have |vL − v| ≤ v̄ and
D ≥ Dsf when hTH(x) = 0. With κ̄ ≥ κ, (39) leads to:

ks(x)− kd(x) ≥ Aκ(Dst −Dsf)− |κ̄−B|v̄. (40)

Thus, (27) and safety follows for Dst > Dsf and (29).

Proof of Theorem 4. We prove safety by applying Corol-
lary 2 and showing that (34) holds, where:

ks(x)−kd(x) = αe

(
κ̄(D−Dsf)+vL−v

)
+κ̄(vL−v)+aL

+ p(v)−A
(
V (D)− v

)
−B

(
W (vL)− v

)
− CaL. (41)

We use V (D) ≤ κ(D −Dst), W (vL) ≤ vL, and p(v) ≥ 0,
substitute hTTC(x) = 0, which makes the term of αe zero;
cf. (6). Then we add AhTTC(x) = 0 to both sides:

ks(x)− kd(x) ≥ A(κ̄− κ)(D −Dsf) +Aκ(Dst −Dsf)

+AvL + (1− C)aL + (κ̄−B)(vL − v). (42)

With aL≥−γ(vL), C ≤ 1, κ ≤ κ̄ and hD(x)=D−Dsf ≥ 0:

ks(x)− kd(x) ≥ Aκ(Dst −Dsf) + (B − κ̄)v

+ (κ̄−B +A)vL − (1− C)γ(vL). (43)

For v, vL ∈ [0, v̄], we have (B − κ̄)v ≥ min{0, B − κ̄}v̄,
whereas Dst > Dsf and (36) yield (34) and imply safety.
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